Abstract

This paper exhibits a method to predict the remaining service lifetime of inflatable rubber dam by considering the appearance of deep hole damage. The material used for the rubber dam is a composite comprising three layers of woven fabric as fiber and EPDM/SBR 64 474 rubber as a matrix. The service lifetime is predicted by calculating the degradation of rubber dam’s material properties. Simple Rate Law model and Time-Temperature Superposition model are employed to calculate the rubber properties degradation. A finite element analysis is then conducted to investigate stress and strain distributions which occur in the rubber dam membrane during operational loading. Furthermore, the effect of deep hole damage in the rubber dam, which is caused by improper maintenance, is modeled as well. The results show that a 7 mm depth of the hole can accelerate rubber degradation, which causes catastrophic failure. This can happen because two layers of the woven fabric in the rubber dam have been broken. Suggestion to hold up the degradation is also discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.