Abstract
Rotary blast hole drills were observed in several formations at different open pit mines and quarries . Rock samples were collected as near as possible to drilling locations and mechanical and physical properties of the total 22 rock samples were determined. Indentation tests were carried out on the block samples from the same formations. A new drillability index for the prediction of the penetration rates of rotary blast hole drills and the mechanical and physical properties of the rock formations was defined from force-indentation curves of indentation tests. A penetration rate model for rotary for blast hole drills was developed using this drillability index. It was seen that the model was valid for the formations having uniaxial compressive strength over 40 MPa and especially for carbonaceous rocks . The drillability index exhibits a significant correlation with the proportionality constant k defined in the model. It is also seen that significant correlations exist between the drillability index and rock properties suggesting that the proposed model may be used universally to estimate the penetration rate of rotary blast hole drills.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Rock Mechanics and Mining Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.