Abstract

The austenitization of low alloy steels during rapid heating processes was involved in many kinds of advanced heat treatment technologies. Most of the previous research on the austenitization kinetics was focused on the spherical pearlite microstructures, which were different from the lamellar pearlite microstructures. In the present research, to predict the non-isothermal austenitization process of an Fe-C-Cr steel with lamellar pearlite, a novel 3-dimensional (3D) cellular automata model, which considered the influences of the coupling diffusion of Cr and C, and the interfacial diffusion between pearlite lamellae and the pearlite lamellar orientation, was established based on the thermodynamic equilibrium data obtained from the Thermo-Calc software and the simulation results of the DICTRA module. To clarify the influences of the heating rate on the austenitization kinetics and validate the simulation results, the austenitization processes of a Fe-1C-1.41Cr steel for different heating rates were studied with a series of dilatometric experiments. The good agreements between the cellular automata simulation results and the experimental results showed that the newly proposed cellular automata model is reasonable. The experimental results show an obvious change of the transition activity energies from the low to high heating rates. The transition from partitioning local equilibrium (PLE) to non-partitioning local equilibrium (NPLE) mechanisms was proved with DICTRA simulations. Basing on the simulation results, the influences of the pearlite lamellae orientation on the austenitization kinetics and the topological aspects of austenite grains were evaluated. In addition, the topological aspects of the rapidly austenitized grains were also compared to the normal grains.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.