Abstract
Comparative protein structure modeling and free energy perturbation simulation have been applied in a consecutive manner to investigate the mutation-induced stabilization of membrane proteins (MPs) in aqueous solution without knowledge of their three-dimensional structures. The calculated difference in protein solvation free energy between the wild type and a mutant compares well with their relative thermodynamic stabilities in solution. For monomeric MPs, a mutant reveals a higher stability than the wild type if the calculated solvation free energy indicates a favorable change. On the contrary, for oligomeric MPs the stability of a mutant increases as the solvation free energy of a mutated monomer becomes less favorable, indicating that the oligomeric MP mutant would be stabilized in solution due to the reduced desolvation cost for oligomerization. The present computational strategy is expected to find its way as a useful tool for assessing the relative stability of a mutant MP with respect to its wild type in solution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.