Abstract

ABSTRACTCoronavirus disease-2019 (COVID-19) is caused by the severe acute respiratory syndrome coronavirus-2 attacking the lungs, which contain the most oxygen. The involvement of oxidative stress in the body and the role of antioxidant compounds, namely catechins, are thought to be able to prevent various diseases, including the COVID-19 infection virus. An in silico approach was employed between the catechins and the protein NADPH oxidase (Nox), followed by the coronavirus protease protein, to limit the generation of reactive oxygen species. This research using the in silico method seeks to predict the mechanism of action of catechin as a superoxide radical anion inhibitor and as an antiviral for COVID-19. This study carried out molecular docking simulations of catechin compounds against Nox and coronavirus proteases and then compared them with positive controls GKT136901 and remdesivir. The binding energy of catechin and Nox in a docking simulation is − 8.30 kcal/mol, which is somewhat lower than GKT136901's binding value of − 8.72 kcal/mol. Catechin and coronavirus proteases had binding energy of − 7.89 kcal/mol, which was greater than remdesivir's binding energy of − 7.50 kcal/mol. Based on in silico data, catechin as an antioxidant compound can be antiviral for COVID-19.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.