Abstract

Combustion is the main parameter that affects efficiency and exhaust gas emissions in internal combustion engines. In this study, the burning speed of gasoline and CNG were investigated quantitatively by calculating the mean value of turbulent consumption speed instead of qualitatively as is usually done. A three-zone quasi-dimensional thermodynamic model based on the measured cylinder pressure was created to calculate the mean value of turbulent consumption speed and turbulence intensity. The mass flow rate of air was kept constant in all experiments as much as possible, and the spark advance was kept constant at each relative air/fuel ratio. Thus, the effect of fuel and combustion chamber design on the consumption speed and turbulence intensity was directly determined. MR shape reached the highest consumption speed and turbulence intensity in all conditions. In the flat geometry, without any bowl, speed continuously decreased differently from the other designs. Natural gas burned clearly faster in the ultra-lean mixture. The increase in turbulence intensity has different effects on CNG and gasoline. The highest value of the mean turbulence intensity was calculated as approximately 3.4 m/s in the MR design. In the ultra-lean mixture, although the mass flow rate of air was constant, the mean value of the turbulence intensity changed in the same combustion chamber. Therefore, it has been determined that the combustion process affects the turbulence intensity. Using the quasi-dimensional thermodynamic model, mean values of the turbulent burning speeds and turbulence intensity might be calculated without having any optical observation and CFD analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call