Abstract

The maximum air velocity created by a moving train inside a tunnel is obtained using an artificial neural network approach. A neural network model is developed to represent a single train travelling in a single tunnel. A set of non-dimensional groups, which are known to influence the induced flow characteristics, is used for the training of the neural network. Various test runs are compared with the results of the authoritative software, Subway Environmental Simulation. The presence of ventilation shafts within a tunnel is included in the model by defining an aerodynamically equivalent single tunnel using major head loss characteristics of different parts of the system. This approach eliminated the requirement to train the neural network for a large number of possible tunnel/shaft configurations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.