Abstract

A new method least square-support vector machine (LS-SVM) was used to develop quantitative structure–property relationship (QSPR) models for predicting the logarithmic of n-octanol/water partition coefficient (log P) of some derivatives phenolic compounds. The calibration and predictive ability of LS-SVM were investigated and compared with those of three other methods; multiple linear regression (MLR), support vector linear regression (SVR) and artificial neural network (ANN). The results showed that the log P values calculated by LS-SVM were in good agreement with experimental values, and the performances of the LS-SVM models were comparable or superior to those of MLR, SVR and ANN methods. The root-mean-square errors of the training set and the predicting set for the LS-SVM model were 0.0855, 0.0746 and the squares of the correlation coefficients were 0.9960 and 0.9728, respectively. These values and other statistical parameters obtained for the LS-SVM model show the reliability of this model. LS-SVM is a new and effective method for predicting log P of some organic compounds, and can be used as a powerful chemometrics tool for QSPR studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.