Abstract

Traction drive elevator installations employ ropes of variable length as a mean of car and counterweight suspension. The inertial and elastic characteristics of elevator suspension systems depend on the rope construction and vary slowly during the elevator travel. The system suffers from vibrations caused by various sources of excitation. This paper presents the analysis of the dynamic response of the suspension system employing traditional steel wire ropes as well as ropes constructed of aramid fibers. The equations describing the lateral response of the system subjected to a boundary periodic excitation are solved numerically. The results show that the entire rope is subjected to repetitive low frequency transient resonances. Consequently, the structural integrity of the suspension ropes is compromised. The issue of active vibration control and the feasibility of the integration of shape memory alloy elements within the suspension rope design are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.