Abstract

BackgroundPrevious studies have shown that for healthy spine, cyclic loading encountered due to whole-body vibration exposure generated higher responses in spinal tissues than static loading. However, how whole-body vibration affects spine biomechanics after interbody fusion surgery is poorly understood. This study aimed at comparing the effects of vibration loading on spinal segments between postsurgical and healthy lumbar spines. MethodsA validated finite element model of healthy human lumbosacral spine was modified to simulate interbody fusion at L4–L5 level considering the statuses immediately after surgery (before bony fusion) and after bony fusion. Biomechanical responses at its adjacent levels for the healthy and fusion models to a sinusoidal axial vibration load of ±40 N and the corresponding static axal loads (−40 N and 40 N) were computed using transient dynamic and static analyses, respectively. FindingsFor both healthy and fusion models, vibration amplitudes of the predicted responses were significantly higher than the corresponding changing amplitudes under static loads. Specifically, the increasing effect of vibration load in disc bulge, disc stress and intradiscal pressure at L3–L4 level reached 255.9%, 215.0% and 224.4% for the healthy model, 157.4%, 177.8% and 171.8% for the fusion model (before bony fusion), 141.9%, 152.6% and 160.1% for the fusion model (after bony fusion). InterpretationAlthough whole-body vibration is still more dangerous for the lumbar spine after interbody fusion surgery than static loading, the sensitivity of adjacent segment in postsurgical spine to vibration loading is decreased compared with healthy spine, especially when reaching to bony fusion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.