Abstract

The study of climatic variables that govern the Indian summer monsoon has been widely explored. In this work, we use a non-linear deep learning-based feature reduction scheme for the discovery of skilful predictors for monsoon rainfall with climatic variables from various regions of the globe. We use a stacked autoencoder network along with two advanced machine learning techniques to forecast the Indian summer monsoon. We show that the predictors such as the sea surface temperature and zonal wind can predict the Indian summer monsoon one month ahead, whereas the sea level pressure can predict ten months before the season. Further, we also show that the predictors derived from a combination of climatic variables can outperform the predictors derived from an individual variable. The stacked autoencoder model with combined predictors of sea surface temperature and sea level pressure can predict the monsoon (June-September) two months ahead with a 2.8% error. The accuracy of the identified predictors is found to be superior to the state-of-the-art predictions of the Indian monsoon.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.