Abstract
Use of in vitro suspensions of human hepatocytes is currently accepted as one of the most promising tools for prediction of metabolic clearance in new drugs. The possibility of creating computational models based on this data may potentiate the early selection process of new drugs. We present an artificial neural network for modelling human hepatocyte intrinsic clearances (CL int) based only on calculated molecular descriptors. In vitro CL int data obtained in human hepatocytes suspensions was divided into a train group of 71 drugs for network optimization and a test group of another 18 drugs for early-stop and internal validation resulting in correlations of 0.953 and 0.804 for the train and test group respectively. The model applicability was tested with 112 drugs by comparing the in silico predicted CL int with the in vivo CL int estimated by the “well-stirred” model based on the in vivo hepatic clearance (CL H). Acceptable correlations were observed with r values of 0.508 and 63% of drugs within a 10-fold difference when considering blood binding in acidic drugs only. This model may be a valuable tool for prediction and simulation in the drug development process, allowing the in silico estimation of the human in vivo hepatic clearance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.