Abstract

The hydrogen-induced damage behavior of ultra-high strength steels (UHSS) has been predicted by a combination of experimental and numerical investigations. Firstly, the resistance against hydrogen-induced failure was examined by slow strain rate tests (SSRT) using various sample geometries and hydrogen contents. Secondly, the hydrogen distribution and loading conditions during the tensile test were calculated by means of the finite element method (FEM). Finally, a combination of various damage models was applied and validated by further SSRT. The main result of this study is a failure prediction model, which considers local stress and strain conditions, as well as hydrogen content.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.