Abstract
An artificial neural network (ANN) was applied for the prediction of the heat transfer coefficient in bubble columns, in order to obtain a general model and to facilitate the scale up of these multiphase contactors, covering a wide range of operating conditions, physical properties, and column dimensions, obtained from literature. A large number of data was collected (more than 1000) via a comprehensive literature survey. Selected parameters affecting the heat transfer coefficient were organized in six groups to serve as the input parameters. These were: gas superficial velocity, gas density, liquid density, diameter of the column, liquid viscosity, and gas hold-up. Four Back-Propagation Networks (BPNNS) were built. Two were trained using a different number of input parameters. The first ANN was trained with six inputs, which were the aforementioned parameters. The second was trained with three inputs only. These were gas velocity, liquid viscosity and gas hold-up. Each ANN was examined for two structures i.e., one hidden layer and two hidden layers. Comparison between these networks was made to find the optimal ANN structure with minimum %AARE and the maximum correlation coefficient (%R). It was found that the ANN structure of [6-13-1] with a %AARE of 16.2 and a %R of 94 was the best.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Chemical Reactor Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.