Abstract
A new model based on least square support vector machines (LSSVM) and capable of forecasting the hardness of Cu-3Ti-1Cr alloy has been proposed. Data mining and artificial intelligence techniques were used to examine the forecasting capability of the model. In order to improve predictive accuracy and generalization ability of LSSVM model, leave-one-out-cross-validation (LOOCV) technique was adopted to determine the optimal hyper-parameters of LSSVM automatically. The forecasting performance of the LSSVM model and the partial least squares (PLS) regression integrated with radial basis function (RBF-PLS) has been compared with the experimental values. The result demonstrates that the LSSVM model is superior to the conventional RBF-PLS model in predicting the hardness of Cu-3Ti-1Cr alloy and of better generalization performance than the RBF-PLS model. The present calculated results are consistent with the experimental values. We would expect the proposed LSSVM model as a powerful tool to forecast the variation of the hardness of copper alloys with prior cold work, aging temperature and aging time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.