Abstract

The knowledge of combustion duration is a key tool in the development of engines, specially nowadays for engines adapted to new fuels with low C/H ratio such as natural gas and hydrogen. This work is aimed to develop a correlation that predicts the duration of the first phase of combustion until the process becomes turbulent in a SI engine. The flame kernel radius when this transition occurs, Rtr, is the study variable.To determine this variable from the experimental pressure records, a flame kernel growth predictive model is used. The predictive model is adjusted to the experimental data, determining the most appropriate Rtr value.The pressure records of 500 consecutive cycles of 48 test points have been processed. The averaged values of Rtr of each test point have been correlated with the characteristic parameters of the process: turbulence and properties of the fuel–air mixtures. Finally, Rtr and integral length scale ratio is correlated with Damköhler number.A wide range of operating conditions have been studied, reaching the novel conclusion that it is possible to analyze the kernel growth phenomenon from a spatial point of view rather than from a temporal point of view, as had been studied in many previous works.The developed correlation can be used in combustion predictive modeling to support SI engine design. Other practical conclusion from the work, that can be used in SI engine development, is that decreasing the integral length scale reduces the time of the first phase of combustion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call