Abstract

A numerical simulator of satellite microwave radiometric observations of mountainous scenes, developed in a previous study, has been used to predict the relief effects on the measurements of a spaceborne radiometer. For this purpose, the trends of the error due to topography, i.e., the difference between the antenna temperature calculated for a topographically variable surface and that computed for a flat terrain versus the parameters representing the relief, have been analyzed. The analysis has been mainly performed for a mountainous area in the Alps by assuming a simplified land-cover scenario consisting of bare terrain with two roughness conditions (smooth and rough soils) and considering L- and C-bands, i.e., those most suitable for soil moisture retrieval. The results have revealed that the error in satellite microwave radiometric observations is particularly correlated to the mean values of the height and slope of the radiometric pixel, as well as to the standard deviations of the aspect angle and local incidence angle. Both a regression analysis and a neural-network approach have been applied to estimate the error as a function of the parameters representing the relief, using the simulator to build training and test sets. The prediction of the topography effects and their correction in radiometric images have turned out to be feasible, at least for the scenarios considered in this study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.