Abstract

The development and constant improvement of accurate predictive models of electricity generation from photovoltaic systems provide valuable planning tools for designers, producers, and self-consumers. In this research, an adaptive neuro-fuzzy inference model (ANFIS) was developed, which is an intelligent hybrid model that integrates the ability to learn by itself provided by neural networks and the function of language expression, how fuzzy logic infers, and an ANFIS model optimized by the particle swarm algorithm, both with a predictive capacity of about eight months. The models were developed using the Matlab® software and trained with four input variables (solar radiation, module temperature, ambient temperature, and wind speed) and the electrical power generated from a photovoltaic (PV) system as the output variable. The models’ predictions were compared with the experimental data of the system and evaluated with rigorous statistical metrics, obtaining results of RMSE = 1.79 kW, RMSPE = 3.075, MAE = 0.864 kW, and MAPE = 1.47% for ANFIS, and RMSE = 0.754 kW, RMSPE = 1.29, MAE = 0.325 kW, and MAPE = 0.556% for ANFIS-PSO, respectively. The evaluations indicate that both models have good predictive capacity. However, the PSO integration into the hybrid model allows for improving the predictive capability of the behavior of the photovoltaic system, which provides a better planning tool.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call