Abstract

Understanding how information propagates in real-life complex networks yields a better understanding of dynamical processes such as misinformation or epidemic spreading. With the recent resurgence of graph neural networks as a powerful predictive methodology, many network properties can be studied in terms of their predictability and as such offer a novel view on the studied process, with the direct application of fast predictions that are complementary to resource-intensive simulations. We investigated whether graph neural networks can be used to predict the effect of an epidemic, should it start from a given individual (patient zero). We reformulate this problem as node regression and demonstrate the high utility of network-based machine learning for a better understanding of the spreading effects. By being able to predict the effect of a given individual being the patient zero, the proposed approach offers potentially orders of magnitude faster risk assessment and potentially aids the adopted epidemic spreading analysis techniques.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call