Abstract

A hybrid method using an approximation that is based on the finite element analysis and empirical modeling is proposed to analyze the dynamic characteristics of a rubber bushing. The hyperelastic–viscoplastic model and an overlay method are used to obtain the hysteresis of the rubber bushing in the finite element analysis. A spring, fractional derivatives, and frictional components are used in the empirical model to obtain the dynamic stiffness in wide ranges of the excitation frequencies and amplitudes. The parameters of the proposed empirical model are determined using the hysteresis curves that were obtained from the finite element analysis. The dynamic stiffness of the rubber bushing in the wide ranges of the frequencies and amplitudes was predicted using the proposed hybrid method and was validated using lower arm bushing experiments. The proposed hybrid method can predict the dynamic stiffness of a rubber bushing without the performance of iterative experiments and the incurrence of a high computational cost, making it applicable to analyses of full-size vehicles with numerous rubber bushings under various vibrational loading conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.