Abstract
A quantum chemical method has been developed to estimate the dissociation constant pK(a) of organic acids from their neutral molecular structures by employing electronic structure properties. The data set covers 219 phenols (including 29 phenols with intramolecular H-bonding), 150 aromatic carboxylic acids, 190 aliphatic carboxylic acids, and 138 alcohols, with pK(a) varying by 16 units (0.38-16.80). Optimized ground-state geometries employing the semiempirical AM1 Hamiltonian have been used to quantify the site-specific molecular readiness to donate or accept electron charge in terms of both charge-associated energies and energy-associated charges, augmented by an ortho substitution indicator for aromatic compounds. The resultant regression models yield squared correlation coefficients (r(2)) from 0.82 to 0.90 and root-mean-square errors (rms) from 0.39 to 0.70 pK(a) units, corresponding to an overall (subset-weighted) r(2) of 0.86. Simulated external validation, leave-10%-out cross-validation and target value scrambling demonstrate the statistical robustness and prediction power of the derived model suite. The low intercorrelation with prediction errors from the commercial ACD package provides opportunity for a consensus model approach, offering a pragmatic way for further increasing the confidence in prediction significantly. Interestingly, inclusion of calculated free energies of aqueous solvation does not improve the prediction performance, probably because of the limited precision provided by available continuum-solvation models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.