Abstract

Little is known about the determinants of thermal stability in individual protein families. Most of the knowledge on thermostability comes, in fact, from comparative analyses between large, and heterogeneous, sets of thermo- and mesophilic proteins. Here, we present a multivariate statistical approach aimed to detect signature sequences for thermostability in a single protein family. It was applied to the glutamate dehydrogenase (GDH) family, which is a good model for investigating this peculiar process. The structure of GDH consists of six subunits, each of them organized into two domains. Formation of ion-pair networks on the surface of the protein subunits, or increase in the inter-subunit hydrophobic interactions, have been suggested as important factors for explaining stability at high temperatures. However, identification of the amino acid changes that are involved in this process still remains elusive. Our approach consisted of a linear discriminant analysis on a set of GDH sequences from Archaea and Bacteria (33 thermo- and 36 mesophilic GDHs). It led to detection of 3 amino acid clusters as the putative determinants of thermal stability. They were localized at the subunit interface or in close proximity to the binding site of the NAD(P)+ coenzyme. Analysis within the clusters led to prediction of 8 critical amino acid sites. This approach could have a wide utility, in the ligth of the notion that each protein family seems to adopt its own strategy for achieving thermostability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.