Abstract

For overbank flows in meandering channels, the flow direction along a meander varies and is affected by floodplain vegetation. This study proposes a model for predicting the depth-averaged two-dimensional flow direction (depth-averaged flow angle) along a meander in smooth and vegetated meandering compound channels. Laboratory experiments were performed in smooth and vegetated channels. Measurements show that the height of the secondary current cell in the main channel is increased by dense floodplain vegetation comparing with that in a non-vegetated channel. A method of determining the height of the cell is proposed. At the middle section between the apex and exit sections, where the secondary current cell is absent, the depth-averaged flow angle is independent of the height of the cell. Beyond the middle section, a new secondary current cell is formed, and the flow angle is highly dependent on the height of the cell. The proposed model is thoroughly verified using the flume experimental and field observed data. Good agreement is obtained between predictions and measurements, indicating that the proposed model is capable of accurately predicting the depth-averaged flow angle along a meander in smooth and vegetated meandering compound channels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.