Abstract

The prediction of the current-voltage (IV) characteristics of resistive switching devices has remained a challenge before their physical realization. This research work addresses the prediction of the IV characteristics and the bipolar switching mechanism of polymer-based resistive switches by examining their structures before their fabrication. The research was carried out through an analytical study of the device structure, thereby correlating the predicted IV curve to the in-situ IV characteristics of the device. Different types of the device structures were considered, depending upon the work function of the top and the bottom electrodes and the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) levels of the sandwiched layer. We concluded that the defects/traps within the sandwiched layer lead to the interface effect being the dominant switching mechanism driving the polymer-based resistive switches. Furthermore, we also found that the devices following the interface effect are driven from trap-limited space-charge-limited current (SCLC) conduction to trap-free SCLC conduction as their current conduction mechanisms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.