Abstract

A method for predicting the crystallization temperature and crystallization driving force of ternary amorphous alloys was provided. This method is an extension of the smallest-vacancy model suggested by Buschow for evaluating crystallization temperatures. The crystallization enthalpy and crystallization driving force are evaluated by using Miedema's semi-empirical model and the crystallization temperature is predicted. Calculation of the crystallization temperatures and enthalpy for (Mg70.6Ni29.4)1-xNdx(x=5,10,15) amorphous alloys are performed by using this method. The calculated results accord well with experimental data and the relative error is less than 8% and 7% for crystallization temperature and crystallization enthalpy, respectively. It is found that with the increasing of crystallization driving force the retention rates of discharge capacity of Mg-Ni-Nd amorphous alloys decreases. For the (Mg70.6Ni29.4)1-xNdx(x=1—20) amorphous alloys, the lowest crystallization driving force appears when the Nd content reaches 6.3%. That means (Mg70.6Ni29.4)93.7Nd6.3 amorphous alloy could have better retention rate of discharge capacity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.