Abstract

The ratio method coupled with the analytical Volkersen model is proposed for the prediction of critical stress intensity factor ( H c) in adhesively bonded single-lap joints. Based on the ratio method, it was shown that despite the singularity of the stress intensity factor ( H) near the bonding end, the ratio of H ( H c) for two single-lap joints with different substrate thicknesses is almost equal at singular and nonsingular regions. It was also found that for joints with different substrate thicknesses, the ratio of H based on the interface shear stress obtained by finite element method is almost equal to the ratio of H obtained using the Volkersen model based on the shear stress along the adhesive mid-plane. The proposed method was applied on single-lap joints with different substrate thicknesses and bonding lengths. According to the experimental results, it was shown that, despite the considerable errors which exist in the stress prediction using the Volkersen model, a combination of Volkersen model and the ratio method could predict the H c of the tested single-lap joints very well. Also using the obtained H c, failure loads of the tested joints were predicted. A good correlation was found between the experimental data and the theoretical predictions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.