Abstract

ABSTRACTIn this work a new thermodynamic model for accurate prediction of H2S and CO2 containing sour gas hydrate equilibrium dissociation temperatures in the presence of a gas hydrate thermodynamic inhibitor (methanol) is presented. The average absolute deviation between the predicted and measured sour gas hydrates dissociation temperatures (AADT%) considering pure and mixed acid gases in the presence of methanol inhibitor is about 0.274% which is much lower than those obtained by the other available thermodynamic models. The proposed approach is quite reliable over wide ranges of methanol and acid gases concentrations and can be used for performance evaluation of other gas hydrate inhibitors regarding the design of sour natural gas flow assurance systems in oil and gas industries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.