Abstract
In the 21st century, numerous numerical calculation techniques have been discovered and used in several fields of science and technology. The purpose of this study was to use an artificial neural network (ANN) to forecast the compressive strength of waste-based concretes. The specimens studied include different kinds of mineral additions: metakaolin, silica fume, fly ash, limestone filler, marble waste, recycled aggregates, and ground granulated blast furnace slag. This method is based on the experimental results available for 1303 different mixtures gathered from 22 bibliographic sources for the ANN learning process. Based on a multilayer feedforward neural network model, the data were arranged and prepared to train and test the model. The model consists of 18 inputs following the type of cement, water content, water to binder ratio, replacement ratio, the quantity of superplasticizer, etc. The ANN model was built and applied with MATLAB software using the neural network module. According to the results forecast by the proposed neural network model, the ANN shows a strong capacity for predicting the compressive strength of concrete and is particularly precise with satisfactory accuracy (R² = 0.9888, MAPE = 2.87%).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.