Abstract

Machine learning with artificial neural network (ANN)-based methods is a powerful tool for the prediction and exploitation of the subtle relationships between the composition and properties of materials. This work utilizes an ANN to predict the composition of high-entropy alloys (HEAs) based on non-equimolar AlCoCrFeMnNi in order to achieve the highest hardness in the system. A simulated annealing algorithm is integrated with the ANN to optimize the composition. A bootstrap approach is adopted to quantify the uncertainty of the prediction. Without any guidance, the design of new compositions of AlCoCrFeMnNi-based HEAs would be difficult by empirical methods. This work successfully demonstrates that, by applying the machine learning method, new compositions of AlCoCrFeMnNi-based HEAs can be obtained, exhibiting hardness values higher than the best literature value for the same alloy system. The correlations between the predicted composition, hardness, and microstructure are also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.