Abstract

The cohesive strength is an important parameter in numerically modeling composite delamination via CZM (cohesive zone model) based FEM. A micromechanical model is proposed to predict the cohesive strength based on the periodic RVE technique. A periodic displacement boundary condition has been presented on the assumption that the RVE is orthotropic in the sense of overall response. The cohesive strengths of T700/QY8911 and AS4/PEEK laminates at various fibers cross-angles are gained by FEM. With the predicted cohesive strengths the FEM simulations on Mixed-Mode bending (MMB) and seven-point bending test are presented, and the results are in fair agreement with experimental observation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.