Abstract

Screening of physicochemical properties should be considered one of the essential steps in the drug discovery pipeline. Among the available methods, biomimetic chromatography with an immobilized artificial membrane is a powerful tool for simulating interactions between a molecule and a biological membrane. This study developed a quantitative structure–retention relationships model that would predict the chromatographically determined affinity of xenobiotics to phospholipids, expressed as a chromatographic hydrophobicity index determined using immobilized artificial membrane chromatography. A heterogeneous set of 261 molecules, mostly showing pharmacological activity or toxicity, was analyzed chromatographically to realize this goal. The chromatographic analysis was performed using the fast gradient protocol proposed by Valko, where acetonitrile was applied as an organic modifier. Next, quantitative structure–retention relationships modeling was performed using multiple linear regression (MLR) methods and artificial neural networks (ANNs) coupled with genetic algorithm (GA)-inspired selection. Subsequently, the selection of the best ANN was supported by statistical parameters, the sum of ranking differences approach with the comparison of rank by random numbers and hierarchical cluster analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.