Abstract

The ability of chemicals to enter the blood-brain barrier (BBB) is a key factor for central nervous system (CNS) drug development. Although many models for BBB permeability prediction have been developed, they have insufficient accuracy (ACC) and sensitivity (SEN). To improve performance, ensemble models were built to predict the BBB permeability of compounds. In this study, in silico ensemble-learning models were developed using 3 machine-learning algorithms and 9 molecular fingerprints from 1757 chemicals (integrated from 2 published data sets) to predict BBB permeability. The best prediction performance of the base classifier models was achieved by a prediction model based on an random forest (RF) and a MACCS molecular fingerprint with an ACC of 0.910, an area under the receiver-operating characteristic (ROC) curve (AUC) of 0.957, a SEN of 0.927, and a specificity of 0.867 in 5-fold cross-validation. The prediction performance of the ensemble models is better than that of most of the base classifiers. The final ensemble model has also demonstrated good accuracy for an external validation and can be used for the early screening of CNS drugs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call