Abstract

Acoustics represents a quality feature of a passenger vehicle. During the first development phases, prediction tools of the acoustic performance are required to assess in the design process. A combination of numerical and experimental data provides a good compromise between accuracy and modeling effort. A key part of the airborne noise transmission chain are the different passive acoustic treatments applied to minimize the noise impact. These treatments usually include one or more layers of poroelastic media. They exhibit a highly dissipative behavior, making them suitable as noise barriers but, at the same time, complex to model. This article aims to identify the parameters that define the appropriate numerical modeling approach for vibroacoustic systems with poroelastic acoustic packages. Two different concepts for the noise reduction based on poroelastic materials have been investigated, namely the insulation through a spring–mass component and the absorption of a porous layer. The essential principles of the theory of poroelasticity are recalled and three material formulations are derived. The application range of each material model is examined with the help of two configurations: a flat plate and a simplified model of a vehicle front end. The acoustic response of the system is solved with the help of the finite element method using the different material formulations for the description of the poroelastic layers, and the results are compared to measurements conducted in a window test bench. Finally, the main findings are summarized and recommendations towards a more realistic representation of the complete transmission chain are presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.