Abstract
Today, the air pollution is a serious environmental problem becoming global concern for human beings Air quality is influenced by emissions, meteorological parameters and topography. The effect of these parameters can be predicted using statistical methods. In current study, the data in the period of March 2012 to October 2013 are used. These data have been gathered from the stations of the Department of Environment and Air Quality Control Organization (Azadi and Sharif stations) in Tehran city. The main purpose was to predict the air quality of the next day and emissions of carbon monoxide and suspended particles under the influence of instability indices and meteorological parameters using the Artificial Neural Network. Results of modeling process showed that the concentration of pollutants is strongly influenced by meteorological parameters. In addition, prediction of the PM10 concentration of the next day using meteorological parameters (RMSE=29.03, R=0.76), instability indices and meteorological parameters (RMSE=28.13, R=0.76) were better than those obtained for AQI predicted by meteorological parameters (RMSE=20.81, R=0.50) and instability indices and meteorological parameters (RMSE=19.23, R=0.47). In general, the predicted values of PM10 and CO were better compared to AQI. It can be concluded that artificial neural network couldn’t load the model properly for AQI compared to PM10.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.