Abstract
In this paper, planar and the cylindrical broadband non-uniform acoustic absorbers were constructed, both of which use broadband absorption units (BAUs) as their building blocks. The impedance boundary Navier–Stokes equation (IBNSE) method was developed to predict the absorption characteristics of the lined duct with non-uniform acoustic absorbers, in which each small piece of perforated plate is acoustically equivalent to a semi-empirical impedance model through the boundary condition. A total of four semi-empirical impedance models were compared under different control parameters. The full Navier–Stokes equation (FNSE) method was used to verify the accuracy of these impedance models. It was found that the IBNSE method with the Goodrich model had the highest prediction accuracy. Finally, the planar and the cylindrical non-uniform acoustic absorbers were constructed through spatial extensions of the BAU. The transmission losses and the absorption coefficients of the rectangular duct–planar acoustic absorber (RDPAA) and annular duct–cylindrical acoustic absorber (ADCAA) systems under grazing flow were predicted, respectively. The results demonstrated that the broadband absorption of the designed non-uniform acoustic absorbers was achieved. The developed IBNSE method with Goodrich model was accurate and computationally efficient, and can be used to predict the absorption characteristics of an acoustically treated duct in the presence of grazing flow.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.