Abstract
An artificial neural network (ANN) model has been developed to analyze and predict the correlation between tensile property and hydrogenation temperature and hydrogen content of hydrogenated Ti600 titanium alloy. The input parameters of the neural network model are hydrogenation temperature and hydrogen content. The output is ultimate tensile strength. The accuracy of ANN model was tested by the testing data samples. The prediction capability of ANN model was compared with the multiple linear regression approach and response surface method. The combined influence of inputs on the tensile property is also simulated using ANN model. It is found that excellent performance of the ANN model was achieved, and the results showed good agreement with experimental data. Moreover, the developed ANN model can be used as a tool to control the tensile property of titanium alloys.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.