Abstract

A simple model was proposed for predicting the Young’s modulus of nanocomposites based on polymeric blends. First, a simple model was derived for binary blends containing only two polymers. This model is more useful for those blends with high degree of continuity. Therefore, the morphology of the blend is divided into parallel and series regions and the percolation theory is used to calculate the volume fraction of these phases. In the next step, the addition of nanoclay, as a third component, is being considered. These nanoparticles may possibly find locations at the matrix, minor or interface. In the latter case, the model was expanded into a three-phase model including the matrix, dispersed and a third phase containing nanoclay which itself was split into series and parallel sections. A model related to the reinforcing effect of nanoclay was employed and combined with the above model to estimate the modulus of this ternary nanocomposite. The experimental data which is obtained from nanocomposite based on low-density polyethylene/thermoplastic starch/Cloisite 30B were compared with the model results and revealed a good agreement with each other. Also, the model predictions were compared with other experimental data from literature sources to verify the model accuracy. The comparison showed that the model predictions can predict the experimental data rationally. This model can be used to determine the structure of a nanocomposite without any other expensive tests.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.