Abstract

Worm gear transmissions have number of advantages over other types of transmission, allowing them a wide scope of applications for the transfer of power and movement. One of the important advantages of this transmission is the possibility of obtaining a large transmission ratio. The lack of worm gear transmission means a relatively low efficiency, especially for the extreme operating conditions primarily related to the high frequency of rotation. Between the flanks of worm and worm gears there is considerable slippage, which results in wear at the worm gear flank and considerable significant power losses that are converted into heat. The amount of energy that is converted into heat to a large extent is determined by the friction coefficient between the flanks. It is therefore very important to take into consideration the process of tribo-system mesh of flanks and lubricant. The paper presents FEM calculated distribution of transmission temperature based on the data about power losses obtained analytically. The resulting temperature distribution is compared to the experimental research.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call