Abstract

Single-walled carbon nanotube (SWCNT) is a promising candidate for strengthening nanocomposite. As the matrix of nanocomposite, a single crystal of copper is designed to be in-plane auxetic along the crystal orientation [1 1 0]. In that way, the nanocomposite could also be auxetic when enhanced by (7, 2) a single-walled carbon nanotube with relatively small in-plane Poisson’s ratio. A series of molecular dynamics (MD) models of the nanocomposite metamaterial are then established to study mechanical behaviors of the nanocomposite. In the modelling, the gap between copper and SWCNT is determined following the principle of crystal stability. The enhanced effect for different content and temperature in different directions is discussed in detail. This study provides a complete set of mechanical parameters of nanocomposite including thermal expansion coefficients (TECs) from 300 K to 800 K for five weight fractions, which is essential for a wide range of applications of auxetic nanocomposites in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.