Abstract

This work aims to compare numerical results obtained by using the Monte Carlo composition-PDF method and a presumed-β-PDF in order to reveal their effects on the prediction of flow and scalar fields in swirling confined methane diffusion flame. Using the intrinsic low dimensional manifolds method for modelling the chemistry and a second moment closure for the turbulence, it is shown that both PDF-methods provide a similar accuracy level of the prediction of mean quantities. While the presumed-β-PDF performs using reasonable computational efforts, the Monte Carlo-PDF allows to capture well the turbulence–chemistry interaction and strong finite-chemistry effects such as local extinction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.