Abstract
Running in is a complex process, and it significantly influences the performance and service life of wear components as the initial phase of the entire wear process. Surface topography is an important feature of wear components. Therefore, it is reasonable to investigate the running-in process with the help of surface topography for improvement. Because the surface roughness after running in is independent of the nature of initial roughness, it is difficult to predict the surface topography after running in based on unworn surface topography. Aiming to build a connection of surface topographies before and after the running-in process, a black-box model predicting surface topography after the running-in process was established based on least-squares support vector machine (LS-SVM), and the areal surface evaluation parameters were adopted as model variables. To increase the adaptability of the predictive model, the main factors of the work condition were also taken into consideration. The prediction effect and sensitivity of the model were tested and analyzed. The analysis indicates that the hybrid property of surface topographies before and after running in is closely related. Moreover, the surface topography after running in is influenced more by the initial surface topography than by the work condition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.