Abstract
Abrasive cloth wheel is significantly flexible at high-speed rotation and could realize adaptive micro-surface contact polishing of the blade of aviation engines. To reduce surface roughness and improve the surface integrity and mechanical property of the blade of aviation engine, this study determined the primary and secondary processing parameters by using orthogonal test and range method. Results show a significant linear correlation between blade surface roughness before and after polishing. A range of polishing parameters for orthogonal central combination test was determined based on the tendency chart. A roughness ratio prediction model was established based on the orthogonal central combination test results. This model was verified significant by variance and diversity analyses. The polishing parameters were optimized using response surface method. Finally, polishing experiment using a blisk confirmed the reliability of the established prediction model and the optimized parameters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The International Journal of Advanced Manufacturing Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.