Abstract

Abstract Artificial neural networks (ANNs) models were developed for the analysis and prediction of the relationship between the cutting conditions and the corresponding fractal parameters of machined surfaces in face milling operation. These models can help manufacturers to determine the appropriate cutting conditions, in order to achieve specific surface roughness profile geometry, and hence achieve the desired tribological performance (e.g. friction and wear) between the contacting surfaces. The input parameters of the “ANNs” models are the cutting parameters: rotational speed, feed, depth of cut, pre-tool flank wear and vibration level. The output parameters of the model are the corresponding calculated fractal parameters: fractal dimension “D” and vertical scaling parameter “G”. The model consists of three-layered feed-forward back-propagation neural network. ANNs models were utilized successfully for modeling and predicting the fractal parameters “D” and “G” in face milling operations. Moreover, W–M fractal function was integrated with the developed ANNs models in order to generate an artificially fractal predicted profiles at different cutting conditions. The predicted profiles were found statistically similar to the actual measured profiles of test specimens.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.