Abstract
This paper is an application of artificial neural networks (ANNs) in the prediction of the geometry of surface blast patterns in limestone quarries. The built model uses 11 input parameters which affect the design of the pattern. These parameters are: formation dip, blasthole diameter, blasthole inclination, bench height, initiation system, specific gravity of the rock, compressive and tensile strength, Young's modulus, specific energy of the explosive and the average resulting fragmentation size. Detailed data from a previous investigation were used to train and verify the network and predict burden and spacing of a blast. The built model was used to conduct parametric studies to show the effect of blasthole diameter and bench height on pattern geometry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.