Abstract

The objective of this article is to report progress toward the development of an Euler analysis procedure for predicting the unstart tolerance of supersonic inlets. As an aid to understanding boundary condition issues, a one-dimensional, linear-analysis procedure was developed and used to analyze inlet unstart behavior. Using these results as a guide, an Euler analysis procedure was extended through the addition of a new bleed boundary condition, a new compressor face boundary condition, and an engine demand model for the simulation of unsteady inlet flows caused by freestream flow disturbances. Five unstart conditions were identified with the Euler analysis of the axisymmetric inlet for both 20- and 90-deg throat bleed configurations. Results show that both increases and decreases in temperature or velocity will unstart the inlet, whereas only pressure decreases will unstart the inlet. It was also found that 90-deg throat bleed improves the unstart tolerance relative to 20-deg throat bleed for freestream pressure decreases, temperature increases, and changes in velocity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.