Abstract

BackgroundConventional measures of heart rate variability (HRV) have shown only modest associations with sudden cardiac death (SCD). Detrended fluctuation analysis (DFA), with novel methodological developments to evaluate the short-term scaling exponent, is a potentially superior method compared to conventional HRV tools. ObjectivesIn this study, the authors studied the analysis of the association between DFA and SCD. MethodsThe investigators studied the predictive value of ultra-short-term heart rate fluctuations (1-minute electrocardiogram samples) with DFA at rest and during different stages of physical exertion for incident SCD among 2,794 participants undergoing clinical exercise testing in the prospective FINCAVAS (Finnish Cardiovascular Study). The novel key DFA measure, the short-scale scaling exponent computed with second-order detrending (DFA2 α1), was the main exposure variable. SCDs were defined by American Heart Association/European Society of Cardiology criteria using death certificates with written accounts of the events. ResultsDuring a median follow-up of 8.3 years (Q1-Q3: 6.4-10.5), 83 SCDs occurred. DFA2 α1 measured at rest (but not in exercise) associated highly significantly with the risk of SCD, with 1-SD lower values associating with a 2.4-fold (Q1-Q3: 2.0-3.0) risk (P < 0.001). The results persisted when adjusting for other major risk factors for SCD, including age, cardiovascular morbidities, cardiorespiratory fitness, heart rate reduction, and left ventricular ejection fraction. Associations between conventional HRV parameters (measured at any stage of exercise or at rest) and SCD were substantially weaker and statistically nonsignificant after adjusting for other risk factors. ConclusionsUltra-short-term DFA2 α1, when measured at rest, is a powerful and independent predictor of SCD. The association between DFA2 α1 and SCD is modified by physical exertion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.