Abstract

The chemical structure of an organic molecule has a direct influence on its three-dimensional conformation. One way to obtain information on this conformation is to use ion mobility spectrometry. This technique allows the separation of different isomers according to their collision cross section (CCS) with an inert gas. Smaller or more compact molecules will have lower collision cross section values than larger molecules. The CCS is an intrinsic ion parameter for a specific gas and is thus predictable. Today, calculations of rigid molecules are commonly performed to obtain additional structural information on an ion. However, calculations are more complex with very flexible molecules. In particular, molecules presenting long alkyl chains can yield a high number of conformers. Each conformer is then associated with a CCS value that is specific to it. We report, here, a methodology to predict CCS of flexible molecules. The used approach is based on automatic conformers research followed by geometry optimization and CCS calculations. Determination of theoretical and experimental CCS values for a rigid polycyclic aromatic hydrocarbons (PAHs) standard was used to calibrate the Mobcal software. Then, 13 standard molecules ranging from 4 to 19 carbon alkyl chains, including three long alkyl chain isomers of C22H38, were analyzed on a TWIMS-ToF and calculated using our methodology. CCS deviations between experimental and theoretical values were found to be less than 1.5% over the whole studied CCS range. This method was finally applied for structural analysis of petroleum compounds refractory to the hydro-denitrogenation process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.