Abstract

The aim of this study was to find strains in embedded reinforcement by monitoring surface deformations. Compared with analytical methods, application of the machine learning regression technique imparts a noteworthy reduction in modeling complexity caused by the tension stiffening effect. The present research aimed to achieve a hybrid learning approach for non-contact prediction of embedded strains based on surface deformations monitored by digital image correlation (DIC). However, due to the small training dataset collected by the installed strain gauges, the input dataset was enriched by a semi-empirical equation proposed in a previous study. Therefore, the present study discussed (i) instrumentation by strain gauge and DIC as well as data acquisition and post-processing of the data, accounting for strain gradients on the concrete surface and embedded reinforcement; (ii) input dataset generation for training machine learning regression models approaching hybrid learning; (iii) data regression to predict strains in embedded reinforcement based on monitored surface deformations; and (iv) the results, validation, and post-processing responses to make the method more robust. Finally, the developed model was evaluated through numerous statistical performance measures. The results showed that the proposed method can reasonably predict strain in embedded reinforcement, providing an innovative type of sensing application with highly improved performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.