Abstract
Summary Hydraulic fracturing is essential for the economic development of tight gas reservoirs and shale-gas reservoirs. Current techniques are unable to predict the stimulated-reservoir-volume (SRV) dependence on fracturing-job and rock-mechanics parameters, which precludes any meaningful optimization. In the authors' previous work on the SRV-propagation prediction, the combined tensile/shear fracturing model applied to the fracturing of tight gas formations has shown the creation of a relatively narrow, focused SRV that resembled behavior dominated by a single fracture. In this work, the model has been significantly improved by the implementation of a rigorous full Newton elasto-plastic solution of the geomechanics of rock containing induced fractures. The results reveal interesting features of complex-fracture propagation in tight formations, which are in broad agreement with the shapes of SRVs obtained from microseismic imaging. The developed code is flexible enough to allow either tensile or shear fracturing or the occurrence of both to be examined on the basis of initial reservoir conditions. Different cases of 2D and 3D simulations will be presented that demonstrate some important features of the process. First, it is found that a wide SRV can result in cases in which initial reservoir conditions are close to the shear-fracturing point, such as in formations with microfractures, partially cemented natural fractures, and abnormally high initial pore pressure. Second, the SRV width is found to depend on the horizontal stress contrast, as expected. Third, wide SRV growth is associated with constant or increasing pumping pressure necessary for further failed-zone growth as a result of the loss of elastic coupling by off-planar failure propagation. Further, under high injection pressure, an efficient fracture elasto-plastic constitutive model developed can drive both maximal and minimal effective stresses to zero or tensile, and, therefore, the creation of tensile fracturing can be predicted simultaneously with shear fracturing. This will then provide a means of modeling proppant transport. The new model is a significant step toward the development of an integrated predictive tool for the optimization of shale-gas development.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.