Abstract

The flow behavior of steels during deformation in the roll gap was simulated by means of single hit compression tests performed in the temperature range 800 °C to 1200 °C. Strain rates of 0.2 to 50 s−1 were employed on selected low-carbon steels containing various combinations of niobium, boron, and copper. The stress/strain curves determined at the higher strain rates were corrected for deformation heating so that constitutive equations pertaining to idealized isothermal conditions could be formulated. When dynamic recovery is the only softening mechanism, these involve a rate equation, consisting of a hyperbolic sine law, and an evolution equation with one internal variable, the latter being the dislocation density. When dynamic recrystallization takes place, the incorporation of the fractional softening by dynamic recrystallization in the evolution equation makes it possible to predict the flow stress after the peak. These expressions can be employed in computer models for on-line gage control during hot-rolling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.